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Percus-Yevick approximation for fluids with spontaneous partial order:
Results for a separable model
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Recently we have applied the Percus-Yevick approximation to nematic fluids with partial spontaneous order
using a diagrammatic implementation of a Ward identity. In this paper we apply the method to study the
isotropic-nematic phase transition of a separable model, where the interparticle potential independently de-
pends on the spatial separation and the relative orientation of the particles. This approach allows us to study the
transition directly without other approximations besides the Percus-Yevick closure itself. Previous works of the
integral equation method on phase transitions were based on the stability criterion or coexistence condition
derived from a truncated density functional expansion. By calculating the correlation functionssittbpic
phase and applying the stability criterion, we find that within the Percus-Yevick approximation there are
numerical solutions indicating an isotropic-nematic phase transition, in agreement with the work by Perera and
co-workergMol. Phys.60, 77 (1987); J. Chem. Phys89, 6941(1988]. With this approach, however, we can
determine the orientationally dependent probability densiself-consistently and wénd the orientationally
partially ordered nematic phase within the Percus-Yevick approximation. With a general qualitative analysis,
we show that the stability limit within the Percus-Yevick approximation is highly unstable numerically, which
may explain why no numerical solutions reaching the stability limit have been found in previous works for
either isotropic-nematic or nematic-smectic phase transitions. We also show analytically that the stability
criterion can be derived from the Ward identifg1063-651X96)05705-4

PACS numbgs): 64.70.Md, 05.40tj

I. INTRODUCTION complications, we concentrate on a separable model, where
the interparticle potential is of the foron(r, (- 0")?), with

Integral-equation methods, which generally involve solv-r being the interparticle separation aflf Q' the orienta-
ing the Ornstein-Zernike equation with the Percus-Yevicktions of the molecules. Note, however, that this approach can
(PY) or hypernetted-chain closure approximation, have beebe applied to more complicated and realiggach as Gay-
widely used to study the pair correlation functions of classi-Berne[8], hard spherocylinders or hard ellipsoidensepa-
cal simple liquidq 1]. They have also been applied to isotro- rable model potentials.
pic fluids of nonspherical particld®,3] and anisotropic flu- In 1973, Workman and Fixman9] generalized the
ids of perfectly aligned moleculdd,5]. These methods have Ornstein-Zernike and Percus-Yevick equations and applied
made significant contributions to our understanding ofthe integral-equation method to study the isotropic-
simple fluid systems. It is therefore worthwhile to generalize@nisotropic phase transitions in liquid crystals. The general-
and apply these useful techniques to the study of the liquidged Ornstein-Zernike equation obtained through the func-
crystals that have partial orientational orders. Recently wdional differentiation of the grand canonical partition
have developed an approa@] to extend the Percus-Yevick function is identical to the one we used in our current ap-
approximation to anisotropic nematic fluids with partial proach. Th? gene’rallzed Percus-Yevick equation in Work-
spontaneous orientational order. This approach is basically an and Fixman S work was based on dens[ty functional
diagrammatic implementation of a Ward identity of the ne-t eory. In general, in terms of th? deES'ty functional theory,

) . : . __the difference of the grand potenti@l) = Q[ p]— Q[ po] be-

matic fluid system with spontaneously broken symmetrles,[Ween two states can be expand@d] as
The Ward identity relates the one-point probability density to
an integral of the two-point correlation function, which en-
ables us to determine the orientationally dependent probabili- SBAQ = f d(1){p(D)IN[p(1)/ po(1)]—[p(1)—po(1)]}
ties self-consistently. With a simpl¥Y model, where the

orientations of the axial molecules in three dimensions are 1

confined to a plane and the interactions between the mol- _EJ Jd(l)d(Z)C(LZ,Po)[P(l)—Po(l)]
ecules depend only on their spatial separation and relative

orientations, we have shown that the Ward identity can be X[p(2)=po(2)]—- -, (1)

implemented with a modified version of the Percus-Yevick .

approximatior]{ 7] and correctly yields an infinite susceptibil- whered(1)=dr,d€; andc(1,2,00) is the direct correlation

ity in the limit of zero wave vector for the Goldstone modes.functions of the reference state with dengity. Usually this

In this paper we apply this method to an investigation of theexpansion is truncated at the two-particle direct correlation
isotropic-nematic phase transition. To avoid mathematicafunction,c(1,2,p,). The free energ¥ can also be expanded
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in a similar fashior{9,11]. In Workman and Fixman’s paper, direction of the magnetization without any energy cost. In
the one-point probability functiop(1) was written in terms  such a system, the susceptibilities are infinite. Analogously,
of reference state densipg(1), mean field potential, and an in nematic fluids with sufficiently strong interparticle inter-
additional functionS [Eq. (13) of Ref.[9]], which was then actions, after the isotropic-nematic phase transition, the ori-
determined by minimizing the free energy expression. With antations of the molecules break the continuous rotational
repulsive potential for rodlike particles they predicted ansymmetry and result in a spontaneous partial order. There-
isotropic-anisotropic phase transition. More recently, alsdore the susceptibility is infinite in the limit of zero wave
based on the density functional expansion of the free energygector. In the Ornstein-Zernike equation,

Stecki and Kloczkowskj11] derived a stability criterion. A 1

coexistence condition was also obtained by setting N N A O O

BAQ=0 in Eq.(1), from which the location of the isotropic- h(k. @, 0%)=c(k,Q,Q7+ 477f ek, 2,0y)

nematic transitiof12] can be determined by using tfo- N A A

tropic phase as the reference state. Perera and co-workers Xp(21)h(k,Q,9Q7), )
[12,13 have found that using the correlation function calcu- . . -
lated in theisotropic phase through the hypernetted chaint® total correlation functiom(k,€2,€2") is directly related
approximation and the referenced hypernetted chain approxi©® the susceptibility, which implies thah(k,€,Q’)
mation, and applying the stability criterion or coexistence@/SO ~ becomes —infinte  as k—0.  Defining
condition described above, they can obtain transition temH (k,€2,Q")=p"4(Q)p"(Q")h(k,Q,Q") and
peratures in good agreement with the Monte Carlo simulaC(k,Q,Q')=p"(Q)pY(Q")c(k,Q,Q’), the above
tion results[14]. However, they also found that the Percus-Ornstein-Zernike equation can be written in a symmetric
Yevick approximation does not predict an isotropic-nematicform,

transition regardless of the form of the model interaction A o~ A~

potential. In studying the nematic-smectic phase transition, H(k,€2,2")=C(k,Q,Q")

Caillol and Weid4,5] also found that there are no numerical

solutions reaching the stability limit within the Percus- + if dQ,C(k,Q, Q) H(k,Q;,0).
Yevick approximation. 4m
With a simple analysis we show that the calculations near ©)

the stability limit are highly unstable in the Percus-Yevick
approximation. This is a general argument that should applyaking bothH andC as integral operators, we can wrjtg]
to isotropic-nematic, nematic-smectic, or other phase transsymbolically h~H~(1—C) !C. If the eigenequation of
tions. Compared to the truncated density functional theorghe operatolC is written as

described above, our method does not impose any additional 1

approximations other than the Percus-Yevick approximation -+ A 5 A -~ z A

itself. The orientational dependent densit§Q2) is directly 47rf A Clk, 2,y Wik, Q) =Ni(K) ik, ), (4)
determined by the Ward identity, Ornstein-Zernike equation,

and Percus-Yevick closure altogether, self-consistentlythe Ornstein-Zernike equatiof8) can be reexpressed as
More importantly, our approach gives qualitatively correct

treatment for the Goldstone modes._ Thus a perturbative H(k,f),fl’)=z Ai(k) ‘i’i(k.ﬁ)i(k,fl’). (5)
theory based on our treatment and taking into account graphs r 1-Ni(k)

(or effects not included in the PY treatment is possible in

principle and consistent with rotational invariance. Clearly, to guarantee that the Goldstone modes are treated

The paper is organized as follows. In the next section wegorrectly so thah(k— 0,€2,Q") —«, we need to ensure that
review briefly the Ward identity and the extended Percusthe operatoC has a unit eigenvalue. By further studying the
Yevick approximation for a nematic fluid with spontaneously relation between the one-particle probability function and the
broken symmetries. We discuss the basis function and othewo-particle direct correlation function(k—0,Q,Q'), we
implementation details in Sec. 1ll. We will show analytically obtain a relation
that we can derive the stability criteri¢ta3] from the Ward R
identity. We also give a qualitative argument to show that the ov(Q) A A
(physica) stability limit is numerically unstable within the &, =¢k=09,9), (6)
Percus-Yevick approximation. Results of the model calcula-
tions are presented in Sec. IV. Section V is a summary. \here

Il. BRIEF REVIEW p(Q)=poexdv(Q)]/Z, (7

A. Ward identity and Z is a normalization constant such that

Spontaneous symmetry breaking is most frequently usedidQp(2)/(4m)=po. This is a typical Ward identity related
in describingn-dimensional ferromagnetl5], where for 0 Goldstone modes due to the spontaneously broken con-
n=2 without the presence of an external field, the directionfinuous rotational symmetries. It is easy to show tfe
of the magnetization is not predetermined. The spontaneouyovidedp depends ol so thatsp(£2) (changes irp due
magnetization breaks the continuous symmetry and leads @ a rotation of the directgris not zero and the eigenvector
spin wave excitations, or Goldstone modes, which rotate thaith unit eigenvalue in Eq(4) is W« p~Y2(Q) 5p(Q), the
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implementation of the Ward identity. (10

for m=0, and form<0, Y —m=(=)"Y},. The total corre-

) ] ) ) lation functionh(r,,Q’) can also be expanded in terms of
The Ward identity, Eq(6), is anexactrelation between spherical harmonics, in general:

the one-point probability density and the two-point correla-

tion function. However, in terms of diagrammatic nomencla-

ture,.the I_Dercus-Yewck closure only includes some pf the h(r,Q,QH)=> > Dy, 1imymm(F) Y1, m, ()

possible diagrams af(1,2), thereford6] the Percus-Yevick [115l mqmym

closure commonly used in systems without a spontaneous Ak o

partial order doesot satisfy the Ward identity. To make the XY 1my () Yim(T). (1D

closure consistent with the Ward identity, the rotational av-

erage on the correlation functions is needed. In Percus andor a nematic systenh;(r,ﬁ,f!’) is invariant under a rota-

Yevick’s original pape{7], they considered a system of in- tion along the direction of the director @xis). This condi-

teracting spherical particles and derived a classical manytion leads to the relatiom=m;+m,, and therefore the ex-

body Hamiltonian in terms of the collective coordinates, pansion CoeﬁiCientﬁlllzlmlmzm(f) are real functions.

which are the Fourier components of the particle density. IN 4 i convenient to expand the interparticle potential, cor-
their derivation, translational invariance of the system was . . ~n N .
) ; . . i rfelatlon functionsc(r,Q,Q'), and(h(r,2,Q')) in terms
imposed. If nonspherical particles are considered, additiona : ; X / ) .
; .~ _0Of rotational invariant$16]. In general, a rotationally invari-
energy terms due to the rotational freedom of the particles ¢ functionE(r O, & b -
should also be included in the Hamiltonian. We would neec?"t functionF(r,£,Q7) can be written as
to introduce new collective coordinates and both rotational
and translational invariances of the whole system should be
applied in deriving a generalized Percus-Yevick closure. In
other words, physically, the underlying effective potential
defined in Percus and Yevick’s original pap&f is rotation-
ally invariant. Therefore the correlation function entering the
Percus-Yevick closure must be rotationally invariant.

We defing(h(r,ﬂ,Q’))rot to be the rotatioqa}l average of (I)Illzl(f,ﬁ,ﬂ’): > C(|1|z|,m1mzm)Y|lm1(ﬁ1)
the correlation functiorn(r,Q,Q'), the modified Percus- my,my
Yevick closure is written as <Y

[

B. Percus-Yevick closure

2My

F(r,Q) =23 F (0,700, 12
1'2

where

o (Q22)Yiin(7) (13
c(r,Q,Q)=1(r,Q,Q")[1+(h(r,Q,Q"))

is a rotational invariant an€(l4l,l,m;m,m) is a Clebsch-
Gordan coefficient. Discussions of expanding correlation
functions in terms of rotational invariants have been well
documented in Ref§16] and[17], and will not be repeated
here. For a nonpolar molecule, orientation of the molecule

—c(r,ﬂ,fl’)], (8

wheref([,Q,ﬂ’)=e‘ﬁ“("ﬁ'ﬁ')—1 is the Mayer function

andu(r,Q,Q’) is the interparticle potential. Q, is equivalent to —Q,. Since Yllml(ﬂl)
=(—1)'1Y} 1, (— 1), using Eqs(12) and(13) we find that
Ill. IMPLEMENTATION DETAILS, WARD IDENTITY, I, must be even. Symmetry requires that |,, andl must
AND THE STABILITY CRITERION all be even.

As discussed in Sec. I, we need to obtain the rotationally

_ ~ averaged total correlation l‘unctiaih(r,ﬁ,fl’))rot in the ex-
We assume that the molecules in the system of our intertrended Percus-Yevick closure. The rotational average is de-
est have axial symmetry and their orientations can be specifined as

fied by anglesQQ=(60,¢). We choose a coordinate system

A. Basis functions

such that thez axis is along the nematic director direction. o A
The single particle density in nematic fluigsis therefore <h(r1919’)>r0t:J dbe(fO)h(f,ﬂ,Q')/J do,
only a function of#é, (14)
p(Q)ZE p1Y10() (9 where R(®) is the rotational operator for a rotation along
' direction  ®. Using the relation Y, (Q’)
=EmD'mm,(a))Y,m(Q), where theD'mm,(&)) are the standard

[thel =0 component op, is related top, defined in Eq(7) ~ Wigner's generalized spherical harmonilcks,17), Q and
by relationp, - o= \4mpg], whereY,,,(Q) are the commonly ' are the angles before and after the rotation, we can fur-
used spherical harmonics, ther write Eq.(14) as
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(h(l’,fl,ﬂ’»mt: ZI 2

hy
T g

4l 2ImiméYI 1m1( Ql) YI 2m2( 92)

* /A Al A Iy ~
XY (Q) > daD, (@)D (&)

m;my 2

XD'rﬁ:n,(&))/f dé

:IE > C(lylyl,m;mim’)

Il 7 1
1'2 m;m,

X h'llzlmimém' [(21+1)

X > C(l4l5l,mym,m)

mymp

XYy m ()Y () Yin(Q). (15)

1My 2Ma
Comparing the above equation with Eq$2) and (13) for
expansionh(r,Q,Q')),,, we obtain relation

(Mrot11,1= Z, C(lalalmimem)hy imrmeme /(214 1).

m;m;

(16)
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h(r,,Q)= > (=1)™hy0m, —m, o/ VATY}

I11omy

X(Q)Y)m (Q)

= > (= 1)™hy o (NNATY]

I1lomy

X ()Y, 1 (Q). (19

oMy

B. Ward identity and the stability criterion

We discussed in the Introduction that from a truncated
density functional expansion of the free energy one can de-
rive a stability conditior{11]. If the direct correlation func-
tion c(k,Q,Q") is expanded in the form of Eq18), the
stability condition can be written as

PoCiio(k=0)

1-———>0
A7\Aw(21+1)

Practically, thel =2 component ot is checked to deter-
mine the phase transition, i.e.,

(20

Corgd k=0
1— PoCa2d )>

877\/5

0. (2D

In this paper, we consider a “separable” model, where e will show that we can reach the same condition from
the potential depends upon the separation of the moleculgfie Ward identity. In Sec. Il A we mentioned that the opera-

and their relative orientations in the form

u(r,(fl~ﬁ’)2). In particular, we assume the Mayer functi

can be written as

. 21+1
f(r,Q,Q'):EI) —- fi(rPi(cosy)

=§f.<r>vrm<ﬁ>v.m<ﬂ'>, 17

where vy is the angle betweef and Q' and the addition

of tor Q(r,ﬂ,flj) must have a unit eigenvalue with eigenvector
ONy(Q)x6p(Q)/pYHQ), or equivalently Eq(4) can be writ-

ten as

n 1 ” ~ a ”
50()= 7 p(S) f 40 c(k=0,0,0)5p(0),
22

where 6p(f2) is the change ofp(ﬁ) due to a rotation.
op() can be written [6] as a linear combina-

ton of L.p(@)=3\I(+1)pY, () and L _p(Q)

theorem for the spherical harmonics has been used. For sega=1V! (I +1)pY| -1(Q), where we have used E). Itis
rable models, the basis functions and the indices for the exstraightforward to substitute expansions fotk,(,Q),
pansion coefficients can be simplified. Explicitly, the expan-p(£2), and dp(€2) into Eq. (22) and obtain the following
sion coefficients) (r) in Eq. (12) are nonzero only when  self-consistent relation for various componentspf

[,=1, and [=0. Substituting the value of the Clebsch-
Gordan coefficientC(110,m, —m,0)=(—1)'*"/ 2l +1 into 1 \/|1(|1+ 1)(21+1)
the expansion, Eq13), we have P~ (4m)*

[(1,+1)(2l,+ 1)C(|I 11,000

X C(I1412,010¢,,,0(k=0)p; pi . (23

F(r,fz,fy)=l§) Fi,0(N/VAm(20,+1) %} Vi m, ()

XY (),

When the higher order expansion coefficieptdor | >2 are
(18 negligible, the above equation leads to

p2C(222,000C(222,010Cppo k=0)/(47r)?
whereF can be the Mayer function, the rotationally averaged
total correlation functionh),, or the correlation function B
c. The total correlation functiom in Eq. (11) can also be =1— M_ (24)

simplified as 8757
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A physically meaningful positive solution fgr, can only be  where
found when the right hand side of E4) is greater than
zero, which is exactly the stability condition, EQ1). . oIl 41\ 172
For numerical computations, it is more convenient to :f 1 ) )
write the Ward identity Eq(6) as[6] z _ldxexp; ( A1 ) v|1(x)P|1(x). 28)
1

~ 1 ~ ~ A ~
Q =—j dQ,c(k—0,Q,,Q Q,). 25 . .
()= 2C( 1i)p(). (29 Equations(26)—(28) are to be solved self-consistently.

Using the expansions, Eq®) and (18), we obtain
C. Ornstein-Zernike equation and Percus-Yevick closure

- Cllllo(k_)o)pll 26) Substituting the expansion for the correlation function
" (amdR2rr 1 c(r,Q,Q") of the form(18), probability densityp(€) of the
_ form (9), and the total correlation function E(L9) into the
Also from Eg.(7) we find Ornstein-Zernike equatiof®), we obtain the relation
1(21,+1\Y2
P|1:27Tpof_ yp 1,(X) |23 Am, (KD om (K)=(=1)™cy  o(K) 811, /201 +1,
(29)
215 +1\12
xexp | ——| w(0P(x)/Z, (27
Iy where
|
1 (21+1)\%2
Alll3ml(k):5IlI3_2l @m2\ 2,11 C(I1113,000C(l 411 3,m0my)c 1 o(K)p; - (30)

We can therefore invert the matrix to obtain the correlation functioh using Eq.(29).

Fork—0 and in the presence of a Goldstone mode, the determinant of the Wagrixery close to zero, which might lead
to a large numerical discrepancy in inverting the matrix. In this case, we solve the Ornstein-Zernike equation in terms of the
eigenvalues and eigenvectors of the integral equadpnExpanding the correlation functions and density in terms of basis
functions discussed in Sec. Ill A, the integral equation can be written explicitly as

> B (K@, (K) = N (K) i (K), (31)
1"m’
where
B (k):é’“m’ G080 dew (Q)pYH Q)Y (ﬁ)fdfyv QYD )Y, (D) (32)
Iml’m’ 4o n 47T(2|1+1) [;m P Im [;m P I'm .

The correlation functior can be expressed as

Nim(K)
Ny ym, (K =(—)™MyaET Y, > > —

Im |7y ml/jim(k)'r/ﬁ/m,(k)

x f Y, n(Dp ™A Q)Yin(D) J €Y, n(©)p ™ AL Yy(R). (33

We have checked numerical results using both the matrix inverting and the eigenequation methods; they agree with each other
as expected.
In terms of the expansion coefficients in E8), the extended Percus-Yevick closure, E), can be written as

u+yr2rp+nz
(4m) 220+ 1)1 C(141311,000f,1110(r) muro(r), (34

G101 =Fipo(n) + 2

i
1117
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where we have used relations summarized in Gray and Gub- ¢i+1(r () O')=(1—a)c/(r,Q,Q')+ ac"r,Q,Q"),
bin’s book[17] for the Clebsch-Gordan coefficients, ands (36)
defined as o
where c"™(r,Q,Q') is the direct correlation function ob-

7={")ror—C. (39  tained at the i(+1)th cycle, 6<@<<1.0 is a mixing param-
eter. We adjust the mixing parametar automatically ac-
cording to the difference ofc'(r,Q,Q')—c"™r,Q,0")],
uch thata is small when the difference is very large and
vice versa. We have also used the Shanks transformation to
try to attenuate large differences in the iterative process.

In order to solve the Ornstein-Zernike equation, Percus-
Yevick closure and the Ward identity self-consistently, we
have adopted the iterative method. We begin the |terat|oﬁ
with the initial guesscM(r,9,Q'), where the superscript
indicates the iteration number. In general for fité itera-
tion, we first obtainc(™(k,Q,Q') through a Fourier trans-
form. Its limit atk— 0 is used in the Ward identity, E¢R5),

~ D. Th d i titi f int t
to determinep(™(Q). This involves solving Eqs(26)—(28) ermodynamic quantiies ot inferes

self-consistently. The converged valuesppfire then substi- We use(P,(cosd)) as the order parameter,

tuted into the Ornstein-Zernike equation to obtain the corre-

lation functionh™(k, 2, Q') using Eqs(29)—(33). Its rota- (P2(0039)>:f df)p(ﬂ)Pz(coso)/f dQp(Q
tional averageh),, is then performed anéh){%(r, Q, Q’)

is substituted in the modified Percus-Yevick closure, Eq. =po1(\5po). (37)

(34), to computec""N(r,©,Q'). This ends thenth itera-
tion. This procedure is repeated many times until the correln a nematic liquid crystal, the single-particle probability
lation functions converge. density p is only a function of the orientation of the
In practice, we use a solution of the standard Lennardparticles Q and the two-particle density, p?(1,2)
Jones isotropic fluids, or a converged result with the same- p@)(r,Q,Q') = p(Q) p(Q)[(r,Q,Q')+1]. For sys-
density at a temperature nearby as an initial guess fofems with Goldstone modes, the rotational average of the
cW(r,Q Q’) To avoid divergence and expedite the com-correlation functionh is needed and the internal energy
putation, we have implemented the mixing scheme, can be expressdd] as

U= %f p@(1,2u(1,2d(1)d(2)

- ;j drdQdQ’ p(2)p(Q)[(h(r,2,Q")) e+ 1]u(r,0,0"). (39)

We can also obtain the pressure equation

ip—l——f drdQdQ'[r-V,u(r,Q,9)1p(Q)p(Q)[(h(r,2,Q")) o+ 1]
0
Lou(r, 9,0
—1——f dQdQ’ (Q)p(ﬂf)f drr3 a—[(h (r,Q,9)) o+ 11, (39)

where the last equation is specifically written for a systemwherea anda; are positive parametera;— 0 is the stability
interacting through a separable potential. limit. We assume that componeritg, o for I,>2 are small

enough to be negligible, or at least that they do not vary
rapidly as the stability limit is approached. The Ornstein-
OZernike equation, Eq(2), takes a simple form in isotropic
é)hase

E. Stability limit

Using a simple qualitative analysis, we made an effort t
understand whether we can reach the stability limit within
the Percus-Yevick closure. We are mainly interested in th
k— 0 limit, which contributes the most in the following ar-
gument. Close to transition in thisotropic phase we can

write — " pohi,1,0(K)Ci 1 0(K) m
—c = .
hood k—0)=—ay, 1110 11120 Am\4m(21,+1)
hzad k—0)= k2+a (40 Using Eqs.(40) and (41), we find
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Aqa AT T ood k—0)=—as,
C000( k—>O) =T
aypo—4m\/am T 22dk—0)=ay, (46)
a, wherea; are again positive constants. The main contribution
Cood k—0)= . (42)  to the integral in Eq.(45) is from the k;—0 limit. It is
k?+a+ poay/(8my5) therefore straightforward to use Eqg0), (42), (46), and
For convenience, we express the Percus-Yevick closure E(S‘."S) to find the following relation:
(8) as a, N N 25 a,
A A A A A A =a —azt ——a4|5—3p
c(r,Q,Q)={1—exd Bu(r,Q, Q)M 1+h(r,Q,0")] K2+a+poa,/(8m\Bm) 87 T (am)F
=7(1,0,9)[1+h(r,Q,0")], (43 a2,
dkijz3 K2+a (4)3%
- N O/ 1
where we  have defined .#(r,Q,Q')=1
—exd Bu(r,Q,Q’)]. The Fourier transform of Eq43) is 47
simply Since [dk,1/(k?+a)xas+ \/a, it is easy to see that when
c(k,ﬂ,f),’):?(k,f),ﬁ’) k—0, a=0 can be a solution if thc_e interaction potential and
the parameters of the system satisfy Ety).
_ - Ao To investigate whether we can reach the stability limit, we
+ | dke7(k—ky,Q,Q")h(ky,Q, Q7). consider a perturbation to the solution discussed above. As-
sume
(44)
More explicitly, using the expansion for the rotational invari- Cood kK—0)= 4”31 N
ants shown in Sec. lll, Eq18), the above equation can be a po—4m\am
written as
- =c30k—0)+ &,
Ci,1,0(K) =771,1,0(K)
aj
(2 +nr2+n2 Cond k—0)= + 65,
+|,2|, @m P 1re C (111211,000 k?+a+ poa/(8m\/5m)
e — e k—0) + &, (48)
Xf dk 1. 711170(K—K1)hysyro(Kye). (45 wherecgafk—0) andc3y(k—0) are the solutions within

the Percus-Yevick closuré, andd, are small perturbations.
To make progress for strong interacting potentials discussedsing Eqs.(48) and(41), to the lowest order i, and d, we
in the paper, we can assume that find

2 2
aipo alpo)

hood k—0)= —a,+ do| 1— ———+ ——3
OOd ) 1 0 277\/@ 647T3
2 2
a azp0 az0o
hosg k—0)= e + 8| 1+ + 49
22& ) k2+a 2 4#\/5('(2"!‘32) 320 3(k2+a2)2) ( )

We denote the direct correlation functions obtained using the Percus-Yevick closukevanitten in the equation above as
c’. It is easy to find

2 2
as a1po a10p0

Cood k—0) =c3%k—0 S| 1— +
OOO( OOO( ) ( 77_)3/2 O( ZW\/E 64#3)

L4 5 azpo 1 2PoJ’ 1
(4w )32 477‘# 'ki+a? * 320n2 L(ki+a?)?

=5y k—0) + &) (50)
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__&1po +a§P(2) . _a+2\/§a
2m\AT 647> o7

1

' sol a4
Cood kK—0) =C5p0T @m S

woo| 142220 [ g, Jr—gagpS iy —p s
2 4m5m 'k2+a? 3207 L(ki+a?)?
=39 k—0)+ 8.
[
Notice that both 8, and &, contain an integral (r—o)
Jdk,1/(k2+a?)2~1/\/a, which diverges aa— 0. From the fanisd 1) =4BENO(r —0) — 75—, (53

analysis above, it is easy to see that the stability limit within

the Percus-Yevick approximation is numerically highly un-where\ is a parameter an®(r — o) is the step function.
stable. This might explain why there have been no numericabome of the results are shown in Figs. 1 to 7. The parameters
solutions, found in previous studi¢4,12,13 that reach the are written in terms of the reduced density and temperature
stability limit, found in previous studieigh,12,13. The argu-  which have standard definitions:pj=No®/V and
ments presented here are not confined to the isotropicF*=kyT/e. All the results presented here are done with
nematic phase transitions. They are completely general angh24 points withAr =0.02r and\ is set to be 0.75.

should apply to other kinds of phase transitiofis., Using the Lennard-Jones—like anisotropic interaction po-
nematic-smectic phase transitjoas well. tentials, Luckhurst and Romano have investigated the
isotropic-nematic transition with Monte Carlo simulations

IV. COMPUTATIONAL RESULTS [14] and theyfound the system in nematic phase before it

) ) freezes. With the same model potentials using stability crite-
We consider a separable model. In particular, we assumgo, and coexistence condition, Perera and co-workers

the Mayer functionf(r,Q,Q')=e P21 can be [12,13 also calculated the transition temperature with mean

written as spherical approximation, hypernetted chain closure, and the
N . a referenced hypernetted chain approximation. Results ob-
fiotl(1, 2, Q") = Fiso(1) + Fanisd ) P2(cog Q2-27)). (51)  tained from the hypernetted chain and referenced hypernet-
ted chain approximations agree reasonably well with the
And we have chosen Monte Carlo results. However, they found similar computa-
tion with the Percus-Yevick closure doe®t predict an

(E) 12_ (E 6” 1 (52) isotropic-nematic transition.
r r ' We also studied the stability criterion with our model po-
tential using the Percus-Yevick closure. When we restrict the
which is the Mayer function for the standard Lennard-Jonesystem to be in the isotropic phasngular dependent coef-
potential, e is the potential depth anga the potential width. ficients p, in Eq. (9) for |#0 are set to be zefpwe found
The anisotropic part of the potential is chosen to be that we cannot obtain converged numerical results at or be-
yond the stability limit. In other words, using the stability
criterion there isno solution that indicates an isotropic-
nematic phase transition. For example, whgpr=0.79 the
oy 1 stability criterion, Eq.(21), implies that the system has a
120 | i phase transition wheety,(k=0) exceeds 126.088. We have
plottedc,,(k=0) as a function of temperatufi€ in Fig. 1.
Notice that we stop getting converged numerical solutions
<(0)220 100 | . around T*=1.01, beforec,,{k=0) exceeds the stability
90 - - limit. This is consistent with what was found by Perera, Ku-
salik, and Patey12].
However, with the Ward identity we can determine an
orientationally dependent density({}) self-consistently.
6009 1 1'1 1'2 1'3 1'4 1'5 o And using this new apprqach we have obtained numerically
) : S ’ ‘ ' converged solutions within the Percus-Yevick closure be-
yond the temperature where the curve in Fig. 1 stops. And
FIG. 1. If the probability density () is restricted to be rota- We foundthe orientationally partially ordered nematic state.
tionally invariant, we stop getting converged numerical solutions!© €stimate the transition temperature, we have tried to use
for the Ornstein-Zernike equation within the Percus-Yevick closure€ither the solution obtained from a lower temperature or the
before the system reaches its stability lifdashed ling We have  one from a higher temperature as an initial guess to start a
plotted c,,(k=0) as a function of the temperature fpf=0.79  self-consistent run. More precisely, we have tried to gradu-
and\=0.75, T* is in reduced unit defined in the text. ally “cool down” the system from an isotropic state as well

fiso(r):exp[ —4pBe€

140 T T T T T T

110 - -

80 -
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FIG. 2. Order parametg{P,(cos)) as a function of the tem- FIG. 4. Internal energy as a function of the temperature. Tri-

perature forp;=0.79 and\=0.75. Squares are the solutions ob- angles are the results obtained if the system is restricted to be in
tained by “heating up” the system while the stars are the ones byisotropic phase. Squares are the solutions obtained by “heating up”
“cooling down” the system. The dotted lines connect the two setsthe system while the stars are the ones by “cooling down” the
of the data points as a guide to the eyes. Notice the hysteresis cloggstem. Dotted lines connect the data points as a guide to the eyes.
to the phase transition. The temperatilifeis again in reduced unit  All relevant quantities are in reduced units defined in the text.
defined in the text.

dually “heat up” th tom f dered stat W“heating” and “cooling” processes. In this case, however,
as gradually “heat up the system from an ordered state. We,, probability density of the system(£) is allowed to

found_ a narrow hysteresis in the region close to the phasgd]ust itself to satisfy the Ward identity. We show that as
transition. In Fig. 2 we show the order parameter as a func- o
. ._expected, the phase transition takes place before the system
tion of the temperature. Crosses are the results we obtaine . e .

feaches its stability limit. The curve obtained from the

by “cooling down” the system from an isotropic phase and “cooling” process in Fig. 3 overlaps with the curve shown
the squares are the ones obtained by “heating up” the sys- '

: . : . in Fig. 1 fromT*=1.04 and above. Below this temperature,
tem fro_m an orientationally .partlally ordered nematic phasethe sgystem prefers to be in a partially ordered nemgtic phase.
There is an abrupt change in the order parameter in both thFhis is clearly shown in Fig. 4 where we have plotted the
“heating” and “cooling” processes, shown in Fig. 2 as dis- '

S o internal energy as a function of temperature. Below the “su-
continuities in both curves. This is due to the nature of the - : . ;
. e . S ercooling” temperature, the internal energy of the isotropic
first order phase transition. The discontinuities occur a ; ; ; .
system(triangles is much higher than that of the partially

T*=1.04 when “cooling” and afr*=1.09 when “heating.” : .
; . ) . aordered nematic system. In Fig. 5 we show the pressure of
The isotropic-nematic phase transition temperature should be

between 1.04 to 1.09 within the hysteresis region. system as temper:_;\tyre varies. .BOFh internal energy and the
7= ressure show a visible discontinuity around the phase tran-
To compare to the data shown in Fig. 1, where the systerﬁ.

. ) . ; ) . sition.
is restrictedto be in an isotropic phase, we again plotted . . . .
Ck=0) as a function of the temperature through both When the continuous rotational symmetry in the system is

broken and results in a partial orientational order, the suscep-
tibility or (h(k=0))220 g0€s to infinity. To compare the
correlation functions before and after the isotropic-nematic
phase transition, we have plottéti(k)) o200 at T*=1.05
obtained through both the “heating” and “cooling” pro-

140

&
130

120

110

6(0)220 100 3 T T T T T é - B
28 i
90 B
26 [ B i
80 24 1 4
70 A B 22 7
60 I I I I I 1 ﬁP//)B 2r 7
0.9 1 11 1.2 13 14 15 1.6 18 .
T*
1.6 - m =
14 | 4
FIG. 3. Direct correlation functiom,,k=0) as a function of 12| ® i
the temperature fopy=0.79 and\ =0.75. The probability density L . \ . . . . .
is self-adjusted to satisfy the Ward identity, not restricted to be 08 09 1 11 12 13 14 15 16

rotationally invariant as in the case of Fig. 1. Squares are the solu-
tions obtained by “heating up” the system while the stars are the
ones by “cooling down” the system. Lines connect the two sets of FIG. 5. Pressure as a function of the temperature. The param-
the data points as a guide to the eyES,s in reduced unit defined eters and symbols are the same as the ones used in Fig. 4. All
in the text. relevant quantities are in reduced units defined in the text.
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FIG. 6. The correlation functiogh(k)) e220 at T*=1.05. As FIG. 7. Correlation function(h(r)),ctio for pg=0.79 and
shown in Fig. 2,T*=1.05 is in the hysteresis region. The system \=0.75 atT*=1.0. Thel=0 component is indicated by the solid
can be found either in an isotropic phagarg or in a partially  line, thel =2 component is marked by squares, other components
ordered nematic phagsgquaresdepending on the initial conditions. are too small to be seen in the figureis in reduced unit defined in
The figure shows that the singularity kat>0 limit is present only  the text.
when the system has a broken spontaneous rotational symrketry.
is in reduced unit defined in the text. density in nematic fluids can be used in conjunction with the

cesses. As shown in Fig. 2 this temperature is in the hysterc-)ms.te"ﬂ"Zernlke equation and Percus-Yevick closure to de-

esis region. The solution obtained through “heating” ter_mlne the_ one-particle probability ‘?'e”SﬁiYﬂ) and corre-
(squares shows that the system has partial orientational or/ation functions self-consistently. This approach allows us to
der while the solution obtained through “cooling(starg  Study the isotropic-nematic transition using an integral equa-
indicates that the system is in isotropic phase. We show i§on method without further approximations other than the
F|g 6 that when the System has a partia| orientational Ordeﬁlosure itself. This is different from the early studies based
lim._o(N(K) )10t 220 @pproaches infinity, which demonstrates on a truncated density functional theory, which showed
the presence of the Goldstone modes. When the system is 2,13 that one cannot find a numerical solution within the
the isotropic phase, howeveh(k) ) 220in the k—0 limit ~ Percus-Yevick closure that indicates a phase transition. We
has a large but finite value. It is reasonable to expect that thgive a qualitative general analysis that explains why the sta-
susceptibility is large as the system approaches the stabilitility limit within the Percus-Yevick approximation is nu-
limit. However, we must emphasize that to treat the Gold-merically highly unstable. Using this approach, we find the
stone modes resulting from a spontaneous breaking of therientationally partially ordered nematic state, in which the
rotational symmetry correctly, it is crucig] that the sus- total correlation functiorh(k) diverges wherk—0, as ex-
ceptibility diverges instead of having a finite value, and thepected for systems with the presence of the Goldstone
Ward identity is the key to achieve that. modes. We also reported the order parameter and other ther-
In F'g-] we show(h(r))rii0 as a function ofr for  modynamic properties of the system in both isotropic and
T*=1.0,p,=0.79, and\ =0.75. The oscillations of the cor- qrientationally partially ordered nematic phases.
relation function as a function afare typical of a fluid with In principle our approach can be used in other models
a highly repulsive core. Since the angular dependent part gfjith strong interparticle interactions. Our experience shows,
the interaction is outside the core, in the core regiefo,  powever, that one needs a considerable amount of numerical
the total correlation functiorh(r,6,6’) is —1. In other  effort for such calculations. Compared to similar calculations
words, as shown in Fig. Th(r))woio0= —47V47 and  in which p(Q) is restricted to be isotropic in each self-
(h(r)}roti10=0 for 1>0 in the core region. All components consistent computational cycle two additional tasks must be
for 1#0 vary on a relatively small scale compared to the"accomplished. One is that(fl) must be determined self-
I=0 counterparts and components for2 are too small o ¢onsistently, the other is that we must solve for director-
be seen in the figure. THe=0 component of the direct €or- i ction dependent correlation functibgk, €, Q') first be-
relation functionCoo(r) shows a sharp rise inside the core ¢,q calculating the rotationally invariant correlation function
and thel =2 componenty,((r) has a sharp peak just outside h(k,Q,9"))- In the process of pursuing a converged nu-
the core. Both components die down rapidly outside the peg erical solution, large deviations from the final solution

and the componentsq(r) for | >2 are much smaller. Thesed{night occur, especially close to the phase transition condi-
[

features are essentially the same as the ones we observe Y 1n such a case. a large basis set is needed. For the model
an earlier model calculatiof6] and therefore we shall not otential we used, a basis set withip to 6 and 1024 radial

include these figures in the paper. With different parameter esh points is necessary. The anisotropic potential we used

within reasonable range, the correlation functions retain th‘?\ere is rather “soft” compared to, for example, the Lennard-
same qualitative features described above. Jones—-like potential14] or hard spherocylinder and hard
V. SUMMARY AND DISCUSSION ellipsoid potentia}ls. We expect that a sharp anisot'ropic' inter-
acting potential in general leads to large fluctuations in the
We have shown that a Ward identity that relates the oneeomputational process. Therefore perhaps a rather large basis
particle probability density to the integral of the two-particle set and long computational time are required to obtain con-
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verged results. We attempted to use the anisotropic potentifdinctionc is short ranged. In order to take into account long-
in the same formalso same parameterss the ones used in range fluctuations, important in studying isotropic-nematic
Luckhurst and Romano’s Monte Carlo wofk4] and were phase transitions, it seems necessary to consider how one can
not able to find a converged numerical solution within thecorrectly apply a more complete closurésuch as
Percus-Yevick approximation in the nematic phase. One podiypernetted-chain approximatipm systems with spontane-
sibility is that there is no numerical solution in this case, theously broken rotational symmetries.
other possibility is that more elaborate computational efforts
are needed. It certainly would be helpful if it could be shown
analytically whether there exists a solution given an interac-
tion potential and parameters of the system. This work was supported by National Science Foundation
So far we have only considered how to apply Percusthrough ALCOM, the Advanced Liquid Crystalline Optical
Yevick closure to systems with spontaneously orientationaMaterials Science and Technology Center through Grant No.
order, in which we have assumed that the direct correlatio®MR8920147 and by the Ohio Board of Regents.
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