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Recently we have applied the Percus-Yevick approximation to nematic fluids with partial spontaneous order
using a diagrammatic implementation of a Ward identity. In this paper we apply the method to study the
isotropic-nematic phase transition of a separable model, where the interparticle potential independently de-
pends on the spatial separation and the relative orientation of the particles. This approach allows us to study the
transition directly without other approximations besides the Percus-Yevick closure itself. Previous works of the
integral equation method on phase transitions were based on the stability criterion or coexistence condition
derived from a truncated density functional expansion. By calculating the correlation functions of theisotropic
phase and applying the stability criterion, we find that within the Percus-Yevick approximation there areno
numerical solutions indicating an isotropic-nematic phase transition, in agreement with the work by Perera and
co-workers@Mol. Phys.60, 77 ~1987!; J. Chem. Phys.89, 6941~1988!#. With this approach, however, we can
determine the orientationally dependent probability densityr self-consistently and wefind the orientationally
partially ordered nematic phase within the Percus-Yevick approximation. With a general qualitative analysis,
we show that the stability limit within the Percus-Yevick approximation is highly unstable numerically, which
may explain why no numerical solutions reaching the stability limit have been found in previous works for
either isotropic-nematic or nematic-smectic phase transitions. We also show analytically that the stability
criterion can be derived from the Ward identity.@S1063-651X~96!05705-4#

PACS number~s!: 64.70.Md, 05.40.1j

I. INTRODUCTION

Integral-equation methods, which generally involve solv-
ing the Ornstein-Zernike equation with the Percus-Yevick
~PY! or hypernetted-chain closure approximation, have been
widely used to study the pair correlation functions of classi-
cal simple liquids@1#. They have also been applied to isotro-
pic fluids of nonspherical particles@2,3# and anisotropic flu-
ids of perfectly aligned molecules@4,5#. These methods have
made significant contributions to our understanding of
simple fluid systems. It is therefore worthwhile to generalize
and apply these useful techniques to the study of the liquid
crystals that have partial orientational orders. Recently we
have developed an approach@6# to extend the Percus-Yevick
approximation to anisotropic nematic fluids with partial
spontaneous orientational order. This approach is basically a
diagrammatic implementation of a Ward identity of the ne-
matic fluid system with spontaneously broken symmetries.
The Ward identity relates the one-point probability density to
an integral of the two-point correlation function, which en-
ables us to determine the orientationally dependent probabili-
ties self-consistently. With a simpleXY model, where the
orientations of the axial molecules in three dimensions are
confined to a plane and the interactions between the mol-
ecules depend only on their spatial separation and relative
orientations, we have shown that the Ward identity can be
implemented with a modified version of the Percus-Yevick
approximation@7# and correctly yields an infinite susceptibil-
ity in the limit of zero wave vector for the Goldstone modes.
In this paper we apply this method to an investigation of the
isotropic-nematic phase transition. To avoid mathematical

complications, we concentrate on a separable model, where
the interparticle potential is of the formu„r ,(V̂•V̂8)2…, with
r being the interparticle separation andV̂, V̂8 the orienta-
tions of the molecules. Note, however, that this approach can
be applied to more complicated and realistic~such as Gay-
Berne@8#, hard spherocylinders or hard ellipsoids! nonsepa-
rable model potentials.

In 1973, Workman and Fixman@9# generalized the
Ornstein-Zernike and Percus-Yevick equations and applied
the integral-equation method to study the isotropic-
anisotropic phase transitions in liquid crystals. The general-
ized Ornstein-Zernike equation obtained through the func-
tional differentiation of the grand canonical partition
function is identical to the one we used in our current ap-
proach. The generalized Percus-Yevick equation in Work-
man and Fixman’s work was based on density functional
theory. In general, in terms of the density functional theory,
the difference of the grand potentialDV5V@r#2V@r0# be-
tween two states can be expanded@10# as

bDV5E d~1!$r~1!ln@r~1!/r0~1!#2@r~1!2r0~1!#%

2
1

2!E E d~1!d~2!c~1,2,r0!@r~1!2r0~1!#

3@r~2!2r0~2!#2•••, ~1!

whered(1)5dr1dV̂1 andc(1,2,r0) is the direct correlation
functions of the reference state with densityr0 . Usually this
expansion is truncated at the two-particle direct correlation
function,c(1,2,r0). The free energyF can also be expanded
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in a similar fashion@9,11#. In Workman and Fixman’s paper,
the one-point probability functionr(1) was written in terms
of reference state densityr0(1), mean field potential, and an
additional functionS @Eq. ~13! of Ref. @9##, which was then
determined by minimizing the free energy expression. With a
repulsive potential for rodlike particles they predicted an
isotropic-anisotropic phase transition. More recently, also
based on the density functional expansion of the free energy,
Stecki and Kloczkowski@11# derived a stability criterion. A
coexistence condition was also obtained by setting
bDV50 in Eq.~1!, from which the location of the isotropic-
nematic transition@12# can be determined by using theiso-
tropic phase as the reference state. Perera and co-workers
@12,13# have found that using the correlation function calcu-
lated in theisotropic phase through the hypernetted chain
approximation and the referenced hypernetted chain approxi-
mation, and applying the stability criterion or coexistence
condition described above, they can obtain transition tem-
peratures in good agreement with the Monte Carlo simula-
tion results@14#. However, they also found that the Percus-
Yevick approximation does not predict an isotropic-nematic
transition regardless of the form of the model interaction
potential. In studying the nematic-smectic phase transition,
Caillol and Weis@4,5# also found that there are no numerical
solutions reaching the stability limit within the Percus-
Yevick approximation.

With a simple analysis we show that the calculations near
the stability limit are highly unstable in the Percus-Yevick
approximation. This is a general argument that should apply
to isotropic-nematic, nematic-smectic, or other phase transi-
tions. Compared to the truncated density functional theory
described above, our method does not impose any additional
approximations other than the Percus-Yevick approximation
itself. The orientational dependent densityr(V) is directly
determined by the Ward identity, Ornstein-Zernike equation,
and Percus-Yevick closure altogether, self-consistently.
More importantly, our approach gives qualitatively correct
treatment for the Goldstone modes. Thus a perturbative
theory based on our treatment and taking into account graphs
~or effects! not included in the PY treatment is possible in
principle and consistent with rotational invariance.

The paper is organized as follows. In the next section we
review briefly the Ward identity and the extended Percus-
Yevick approximation for a nematic fluid with spontaneously
broken symmetries. We discuss the basis function and other
implementation details in Sec. III. We will show analytically
that we can derive the stability criterion@13# from the Ward
identity. We also give a qualitative argument to show that the
~physical! stability limit is numerically unstable within the
Percus-Yevick approximation. Results of the model calcula-
tions are presented in Sec. IV. Section V is a summary.

II. BRIEF REVIEW

A. Ward identity

Spontaneous symmetry breaking is most frequently used
in describingn-dimensional ferromagnets@15#, where for
n>2 without the presence of an external field, the direction
of the magnetization is not predetermined. The spontaneous
magnetization breaks the continuous symmetry and leads to
spin wave excitations, or Goldstone modes, which rotate the

direction of the magnetization without any energy cost. In
such a system, the susceptibilities are infinite. Analogously,
in nematic fluids with sufficiently strong interparticle inter-
actions, after the isotropic-nematic phase transition, the ori-
entations of the molecules break the continuous rotational
symmetry and result in a spontaneous partial order. There-
fore the susceptibility is infinite in the limit of zero wave
vector. In the Ornstein-Zernike equation,

h~k,V̂,V̂8!5c~k,V̂,V̂8!1
1

4pE dV̂1c~k,V̂,V̂1!

3r~V̂1!h~k,V̂1 ,V̂8!, ~2!

the total correlation functionh(k,V̂,V̂8) is directly related
to the susceptibility, which implies thath(k,V̂,V̂8)
also becomes infinite as k→0. Defining
H(k,V̂,V̂8)5r1/2(V̂)r1/2(V̂8)h(k,V̂,V̂8) and
C(k,V̂,V̂8)5r1/2(V̂)r1/2(V̂8)c(k,V̂,V̂8), the above
Ornstein-Zernike equation can be written in a symmetric
form,

H~k,V̂,V̂8!5C~k,V̂,V̂8!

1
1

4pE dV̂1C~k,V̂,V̂1!H~k,V̂1 ,V̂8!.

~3!

Taking bothH andC as integral operators, we can write@6#
symbolically h;H;(12C)21C. If the eigenequation of
the operatorC is written as

1

4pE dV̂1C~k,V̂,V̂1 ,!Ĉi~k,V̂1!5l i~k!Ĉ i~k,V̂!, ~4!

the Ornstein-Zernike equation,~3! can be reexpressed as

H~k,V̂,V̂8!5(
i

l i~k!

12l i~k!
Ĉi~k,V̂! i~k,V̂8!. ~5!

Clearly, to guarantee that the Goldstone modes are treated
correctly so thath(k→0,V̂,V̂8)→`, we need to ensure that
the operatorC has a unit eigenvalue. By further studying the
relation between the one-particle probability function and the
two-particle direct correlation functionc(k→0,V̂,V̂8), we
obtain a relation

dv~V̂!

dr~V̂8!
5c~k→0,V̂,V̂8!, ~6!

where

r~V̂!5r0exp@v~V̂!#/Z, ~7!

and Z is a normalization constant such that
*dV̂r(V̂)/(4p)5r0 . This is a typical Ward identity related
to Goldstone modes due to the spontaneously broken con-
tinuous rotational symmetries. It is easy to show that@6#,
providedr depends onV̂ so thatdr(V̂) ~changes inr due
to a rotation of the director! is not zero and the eigenvector
with unit eigenvalue in Eq.~4! is C}r21/2(V̂)dr(V̂), the
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singularity inH(k,V̂,V̂8) @or h(k,V̂,V̂8)# as k→0 due to
the Goldstone modes can be treated correctly with proper
implementation of the Ward identity.

B. Percus-Yevick closure

The Ward identity, Eq.~6!, is anexact relation between
the one-point probability density and the two-point correla-
tion function. However, in terms of diagrammatic nomencla-
ture, the Percus-Yevick closure only includes some of the
possible diagrams ofc(1,2), therefore@6# the Percus-Yevick
closure commonly used in systems without a spontaneous
partial order doesnot satisfy the Ward identity. To make the
closure consistent with the Ward identity, the rotational av-
erage on the correlation functions is needed. In Percus and
Yevick’s original paper@7#, they considered a system of in-
teracting spherical particles and derived a classical many-
body Hamiltonian in terms of the collective coordinates,
which are the Fourier components of the particle density. In
their derivation, translational invariance of the system was
imposed. If nonspherical particles are considered, additional
energy terms due to the rotational freedom of the particles
should also be included in the Hamiltonian. We would need
to introduce new collective coordinates and both rotational
and translational invariances of the whole system should be
applied in deriving a generalized Percus-Yevick closure. In
other words, physically, the underlying effective potential
defined in Percus and Yevick’s original paper@7# is rotation-
ally invariant. Therefore the correlation function entering the
Percus-Yevick closure must be rotationally invariant.

We define^h(r ,V̂,V̂8)& rot to be the rotational average of
the correlation functionh(r ,V̂,V̂8), the modified Percus-
Yevick closure is written as

c~r ,V̂,V̂8!5 f ~r ,V̂,V̂8!@11^h~r ,V̂,V̂8!& rot

2c~r ,V̂,V̂8!#, ~8!

where f (r ,V̂,V̂8)5e2bu(r ,V̂,V̂8)21 is the Mayer function
andu(r ,V̂,V̂8) is the interparticle potential.

III. IMPLEMENTATION DETAILS, WARD IDENTITY,
AND THE STABILITY CRITERION

A. Basis functions

We assume that the molecules in the system of our inter-
est have axial symmetry and their orientations can be speci-
fied by anglesV̂5(u,f). We choose a coordinate system
such that thez axis is along the nematic director direction.
The single particle density in nematic fluidsr is therefore
only a function ofu,

r~V̂!5(
l

r lYl0~V̂! ~9!

@the l50 component ofr l is related tor0 defined in Eq.~7!
by relationr l505A4pr0#, whereYlm(V̂) are the commonly
used spherical harmonics,

Ylm~u,f!5~21!mS 2l11

4p D 1/2S ~ l2m!!

~ l1m!! D
1/2

Plm~cosu!eimf

~10!

for m>0, and form,0, Yl ,2m5(2)mYlm
! . The total corre-

lation functionh(r ,V̂,V̂8) can also be expanded in terms of
spherical harmonics, in general:

h~r ,V̂,V̂8!5 (
l1l2l

(
m1m2m

hl1l2lm1m2m
~r !Yl1m1

~V̂!

3Yl2m2
~V̂8!Ylm* ~ r̂ !. ~11!

For a nematic system,h(r ,V̂,V̂8) is invariant under a rota-
tion along the direction of the director (z axis!. This condi-
tion leads to the relationm5m11m2 , and therefore the ex-
pansion coefficientshl1l2lm1m2m

(r ) are real functions.
It is convenient to expand the interparticle potential, cor-

relation functionsc(r ,V̂,V̂8), and^h(r ,V̂,V̂8)& rot in terms
of rotational invariants@16#. In general, a rotationally invari-
ant functionF(r ,V̂,V̂8) can be written as

F~r ,V̂,V̂8!5 (
l1l2l

Fl1l2l
~r !F l1l2l

~ r̂ ,V̂,V̂8!, ~12!

where

F l1l2l
~ r̂ ,V̂,V̂8!5 (

m1 ,m2

C~ l 1l 2l ,m1m2m!Yl1m1
~V̂1!

3Yl2m2
~V̂2!Ylm

! ~ r̂ ! ~13!

is a rotational invariant andC( l 1l 2l ,m1m2m) is a Clebsch-
Gordan coefficient. Discussions of expanding correlation
functions in terms of rotational invariants have been well
documented in Refs.@16# and@17#, and will not be repeated
here. For a nonpolar molecule, orientation of the molecule
V̂1 is equivalent to 2V̂1 . Since Yl1m1

(V̂1)

5(21)l1Yl1m1
(2V̂1), using Eqs.~12! and~13! we find that

l 1 must be even. Symmetry requires thatl 1 , l 2 , and l must
all be even.

As discussed in Sec. II, we need to obtain the rotationally
averaged total correlation function^h(r ,V̂,V̂8)& rot in the ex-
tended Percus-Yevick closure. The rotational average is de-
fined as

^h~r ,V̂,V̂8!& rot5E dv̂R~v̂ !h~r ,V̂,V̂8!YE dv̂,

~14!

whereR(v̂) is the rotational operator for a rotation along
direction v̂. Using the relation Ylm8(V̂8)
5(mDmm8

l (v̂)Ylm(V̂), where theDmm8
l (v̂) are the standard

Wigner’s generalized spherical harmonics@16,17#, V̂ and
V̂8 are the angles before and after the rotation, we can fur-
ther write Eq.~14! as
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^h~r ,V̂,V̂8!& rot5 (
l1l2l

(
m18 ,m28

hl1l2lm18m28
Yl1m1

~V̂1!Yl2m2
~V̂2!

3Ylm
! ~V̂! (

m1m2

E dv̂D
m1m18

l1 ~v̂ !D
m2m28

l2 ~v̂ !

3Dmm8
l ,!

~v̂ !YE dv̂

5 (
l1l2l

(
m18m28

C~ l 1l 2l ,m18m28m8!

3hl1l2lm18m28m8 /~2l11!

3 (
m1m2

C~ l 1l 2l ,m1m2m!

3Yl1m1
~V̂1!Yl2m2

~V̂2!Ylm
! ~V̂!. ~15!

Comparing the above equation with Eqs.~12! and ~13! for
expansion̂ h(r ,V̂,V̂8)& rot , we obtain relation

^h& rot,l1l2l5 (
m18m28

C~ l 1l 2l ,m18m28m8!hl1l2lm18m28m8 /~2l11!.

~16!

In this paper, we consider a ‘‘separable’’ model, where
the potential depends upon the separation of the molecules
and their relative orientations in the form of
u„r ,(V̂•V̂8)2…. In particular, we assume the Mayer function
can be written as

f ~r ,V̂,V̂8!5(
l

2l11

4p
f l~r !Pl~cosg!

5(
l ,m

f l~r !Ylm* ~V̂!Ylm~V̂8!, ~17!

whereg is the angle betweenV̂ and V̂8 and the addition
theorem for the spherical harmonics has been used. For sepa-
rable models, the basis functions and the indices for the ex-
pansion coefficients can be simplified. Explicitly, the expan-
sion coefficientsFl1l2l

(r ) in Eq. ~12! are nonzero only when

l 15 l 2 and l50. Substituting the value of the Clebsch-
Gordan coefficient,C( l l 0,m,2m,0)5(21)l1m/A2l11 into
the expansion, Eq.~13!, we have

F~r ,V̂,V̂8!5(
l1

Fl1l10
~r !/A4p~2l 111! (

m1

Yl1m1
* ~V̂!

3Yl1m1
~V̂8!, ~18!

whereF can be the Mayer function, the rotationally averaged
total correlation function̂ h& rot , or the correlation function
c. The total correlation functionh in Eq. ~11! can also be
simplified as

h~r ,V̂,V̂8!5 (
l1l2m1

~21!m1hl1l20,m1 ,2m1 ,0
~r !/A4pYl1m1

*

3~V̂!Yl2m1
~V̂8!

5 (
l1l2m1

(21)m1hl1l2m1
~r !/A4pYl1m1

!

3~V̂!Yl2m1
~V̂8!. ~19!

B. Ward identity and the stability criterion

We discussed in the Introduction that from a truncated
density functional expansion of the free energy one can de-
rive a stability condition@11#. If the direct correlation func-
tion c(k,V̂,V̂8) is expanded in the form of Eq.~18!, the
stability condition can be written as

12
r0cll 0~k50!

4pA4p~2l11!
.0. ~20!

Practically, thel52 component ofcll 0 is checked to deter-
mine the phase transition, i.e.,

12
r0c220~k50!

8pA5p
.0. ~21!

We will show that we can reach the same condition from
the Ward identity. In Sec. II A we mentioned that the opera-
torC(r ,V̂,V̂8) must have a unit eigenvalue with eigenvector
C(V̂)}dr(V̂)/r1/2(V̂), or equivalently Eq.~4! can be writ-
ten as

dr~V̂!5
1

4p
r~V̂!E dV̂8c~k50,V̂,V̂8!dr~V̂8!,

~22!

where dr(V̂) is the change ofr(V̂) due to a rotation.
dr(V̂) can be written @6# as a linear combina-
tion of L̂1r(V̂)5( lAl ( l11)r lYl ,1(V̂) and L̂2r(V̂)
5( lAl ( l11)r lYl ,21(V̂), where we have used Eq.~9!. It is
straightforward to substitute expansions forc(k,V,V8),
r(V̂), and dr(V̂) into Eq. ~22! and obtain the following
self-consistent relation for various components ofr l ,

r l25
1

~4p!2(l1 ,l
A l 1~ l 111!~2l11!

l 2~ l 211!~2l 211!
C~ l l 1l 2,000!

3C~ l l 1l 2,011!cl1l10~k50!r l1r l . ~23!

When the higher order expansion coefficientsr l for l.2 are
negligible, the above equation leads to

r2C~222,000!C~222,011!c220~k50!/~4p!2

512
r0c220~k50!

8pA5p
. ~24!
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A physically meaningful positive solution forr2 can only be
found when the right hand side of Eq.~24! is greater than
zero, which is exactly the stability condition, Eq.~21!.

For numerical computations, it is more convenient to
write the Ward identity Eq.~6! as @6#

v~V̂1!5
1

4pE dV̂2c~k→0,V̂1 ,V̂2!r~V̂2!. ~25!

Using the expansions, Eqs.~9! and ~18!, we obtain

v l15
cl1l10~k→0!r l1

~4p!3/2A2l11
. ~26!

Also from Eq.~7! we find

r l152pr0E
21

1 S 2l 111

4p D 1/2Pl1
~x!

3exp(
l18

S 2l 1811

4p D 1/2v l
18
~x!Pl

18
~x!/Z, ~27!

where

Z5E
21

1

dxexp(
l18

S 2l 1811

4p D 1/2v l
18
~x!Pl

18
~x!. ~28!

Equations~26!–~28! are to be solved self-consistently.

C. Ornstein-Zernike equation and Percus-Yevick closure

Substituting the expansion for the correlation function
c(r ,V̂,V̂8) of the form~18!, probability densityr(V̂) of the
form ~9!, and the total correlation function Eq.~19! into the
Ornstein-Zernike equation~2!, we obtain the relation

(
l3

Al1l3m1
~k!hl3l2m1

~k!5~21!m1cl1l10~k!d l1l2 /A2l 111,

~29!

where

Al1l3m1
~k!5d l1l32(

l

1

~4p!2 S 2l11

2l 311D
1/2

C~ l 1l l 3,000!C~ l 1l l 3 ,m10m1!cl1l10~k!r l . ~30!

We can therefore invert the matrixA to obtain the correlation functionh using Eq.~29!.
For k→0 and in the presence of a Goldstone mode, the determinant of the matrixA is very close to zero, which might lead

to a large numerical discrepancy in inverting the matrix. In this case, we solve the Ornstein-Zernike equation in terms of the
eigenvalues and eigenvectors of the integral equation~4!. Expanding the correlation functions and density in terms of basis
functions discussed in Sec. III A, the integral equation can be written explicitly as

(
l 8m8

Blml8m8~k!c l 8m8
i

~k!5l lm
i ~k!c lm

i ~k!, ~31!

where

Blml8m8~k!5
dmm8
4p (

l1

cl1l10~k!

A4p~2l 111!
E dV̂Yl1m

~V̂!r1/2~V̂!Ylm~V̂!E dV̂8Yl1m
~V̂8!r1/2~V̂8!Yl 8m~V̂8!. ~32!

The correlation functionh can be expressed as

hl1l2m1
~k!5~21!m1A4p(

lm
(
l 8m8

(
i

l lm
i ~k!

12l lm
i ~k!

c lm
i ~k!c l 8m8

i
~k!

3E dV̂Yl1m
~V̂!r21/2~V̂!Ylm~V̂!E dV̂8Yl2m

~V̂8!r21/2~V̂8!Yl 8m~V̂8!. ~33!

We have checked numerical results using both the matrix inverting and the eigenequation methods; they agree with each other
as expected.

In terms of the expansion coefficients in Eq.~18!, the extended Percus-Yevick closure, Eq.~8!, can be written as

cl1l10~r !5 f l1l10~r !1 (
l18 ,l19

~2l 1811!1/2~2l 1911!1/2

~4p!3/2~2l 111!1/2
C2~ l 18l 19l 1,000! f l18 l180~r !h l

19 l190
~r !, ~34!
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where we have used relations summarized in Gray and Gub-
bin’s book@17# for the Clebsch-Gordan coefficients, andh is
defined as

h5^h& rot2c. ~35!

In order to solve the Ornstein-Zernike equation, Percus-
Yevick closure and the Ward identity self-consistently, we
have adopted the iterative method. We begin the iteration
with the initial guessc(1)(r ,V̂,V̂8), where the superscript
indicates the iteration number. In general for thenth itera-
tion, we first obtainc(n)(k,V̂,V̂8) through a Fourier trans-
form. Its limit atk→0 is used in the Ward identity, Eq.~25!,
to determiner (n)(V̂). This involves solving Eqs.~26!–~28!
self-consistently. The converged values ofr l are then substi-
tuted into the Ornstein-Zernike equation to obtain the corre-
lation functionh(n)(k,V̂,V̂8) using Eqs.~29!–~33!. Its rota-
tional averagêh& rot is then performed and̂h& rot

(n)(r ,V̂,V̂8)
is substituted in the modified Percus-Yevick closure, Eq.
~34!, to computec(n11)(r ,V̂,V̂8). This ends thenth itera-
tion. This procedure is repeated many times until the corre-
lation functions converge.

In practice, we use a solution of the standard Lennard-
Jones isotropic fluids, or a converged result with the same
density at a temperature nearby as an initial guess for
c(1)(r ,V̂,V̂8). To avoid divergence and expedite the com-
putation, we have implemented the mixing scheme,

ci11~r ,V̂,V̂8!5~12a!ci~r ,V̂,V̂8!1acnew~r ,V̂,V̂8!,
~36!

where cnew(r ,V̂,V̂8) is the direct correlation function ob-
tained at the (i11)th cycle, 0,a,1.0 is a mixing param-
eter. We adjust the mixing parametera automatically ac-
cording to the difference ofuci(r ,V̂,V̂8)2cnew(r ,V̂,V̂8)u,
such thata is small when the difference is very large and
vice versa. We have also used the Shanks transformation to
try to attenuate large differences in the iterative process.

D. Thermodynamic quantities of interest

We use^P2(cosu)& as the order parameter,

^P2~cosu!&5E dV̂r~V̂!P2~cosu!YE dV̂r~V̂!

5r2 /~A5r0!. ~37!

In a nematic liquid crystal, the single-particle probability
density r is only a function of the orientation of the
particles V̂ and the two-particle density,r (2)(1,2)
5r (2)(r ,V̂,V̂8)5r(V̂)r(V̂8)@h(r ,V̂,V̂8)11#. For sys-
tems with Goldstone modes, the rotational average of the
correlation functionh is needed and the internal energyU
can be expressed@1# as

U5
1

2E r~2!~1,2!u~1,2!d~1!d~2!

5
V

2E drdV̂dV̂8r~V̂!r~V̂8!@^h~r ,V̂,V̂8!& rot11#u~r ,V̂,V̂8!. ~38!

We can also obtain the pressure equation

bP

r0
512

b

6r0
E drdV̂dV̂8@r•¹ ru~r ,V̂,V̂8!#r~V̂!r~V̂8!@^h~r ,V̂,V̂8!& rot11#

512
2pb

3r0
E dV̂dV̂8r~V̂!r~V̂8!E

0

`

drr 3
]u~r ,V̂,V̂8!

]r
@^h~r ,V̂,V̂8!& rot11#, ~39!

where the last equation is specifically written for a system
interacting through a separable potential.

E. Stability limit

Using a simple qualitative analysis, we made an effort to
understand whether we can reach the stability limit within
the Percus-Yevick closure. We are mainly interested in the
k→0 limit, which contributes the most in the following ar-
gument. Close to transition in theisotropic phase we can
write

h000~k→0!52a1 ,

h220~k→0!5
a2

k21a
, ~40!

wherea andai are positive parameters,a→0 is the stability
limit. We assume that componentshl1l10 for l 1.2 are small

enough to be negligible, or at least that they do not vary
rapidly as the stability limit is approached. The Ornstein-
Zernike equation, Eq.~2!, takes a simple form in isotropic
phase,

hl1l10~k!2cl1l10~k!5
r0hl1l10~k!cl1l10~k!

4pA4p~2l 111!
. ~41!

Using Eqs.~40! and ~41!, we find
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c000~k→0!5
4pa1A4p

a1r024pA4p
,

c220~k→0!5
a2

k21a1r0a2 /~8pA5p!
. ~42!

For convenience, we express the Percus-Yevick closure Eq.
~8! as

c~r ,V̂,V̂8!5$12exp@bu~r ,V̂,V̂8!#%@11h~r ,V̂,V̂8!#

5F ~r ,V̂,V̂8!@11h~r ,V̂,V̂8!#, ~43!

where we have defined F (r ,V̂,V̂8)51
2exp@bu(r ,V̂,V̂8)#. The Fourier transform of Eq.~43! is
simply

c~k,V̂,V̂8!5F ~k,V̂,V̂8!

1E dk1F ~k2k1 ,V̂,V̂8!h~k1 ,V̂,V̂8!.

~44!

More explicitly, using the expansion for the rotational invari-
ants shown in Sec. III, Eq.~18!, the above equation can be
written as

cl1l10~k!5F l1l10
~k!

1 (
l18 ,l28

~2l 1811!1/2~2l 2811!1/2

~4p!3/2~2l 111!1/2
C2~ l 18l 28l 1,000!

3E dk1F l
18 l180

~k2k1!hl
28 l280

~k1!. ~45!

To make progress for strong interacting potentials discussed
in the paper, we can assume that

F 000~k→0!52a3,

F 220~k→0!5a4 , ~46!

whereai are again positive constants. The main contribution
to the integral in Eq.~45! is from the k1→0 limit. It is
therefore straightforward to use Eqs.~40!, ~42!, ~46!, and
~45! to find the following relation:

a2

k21a1r0a2 /~8pA5p!
5a41S 2a31

2A5
7

a4D a2
~4p!3/2

3E dk1
1

k1
21a

2
a1a4

~4p!3/2
.

~47!

Since*dk11/(k1
21a)}a51Aa, it is easy to see that when

k→0, a50 can be a solution if the interaction potential and
the parameters of the system satisfy Eq.~47!.

To investigate whether we can reach the stability limit, we
consider a perturbation to the solution discussed above. As-
sume

c000~k→0!5
4pa1A4p

a1r024pA4p
1d0

5c000
sol~k→0!1d0 ,

c220~k→0!5
a2

k21a1r0a2 /~8pA5p!
1d2

5c220
sol ~k→0!1d2 , ~48!

wherec000
sol (k→0) andc220

sol (k→0) are the solutions within
the Percus-Yevick closure,d0 andd2 are small perturbations.
Using Eqs.~48! and~41!, to the lowest order ind0 andd2 we
find

h000~k→0!52a11d0S 12
a1r0

2pA4p
1
a1
2r0

2

64p3D ,
h220~k→0!5

a2
k21a

1d2S 11
a2r0

4pA5p~k21a2!
1

a2
2r0

2

320p3~k21a2!2D . ~49!

We denote the direct correlation functions obtained using the Percus-Yevick closure andh written in the equation above as
c8. It is easy to find

c0008 ~k→0!5c000
sol ~k→0!2

a3
~4p!3/2

d0S 12
a1r0

2pA4p
1
a1
2r0

2

64p3D
1

a4
7~4p!3

d2S 11
a2r0

4pA5p
E dk1

1

k1
21a2

1
a2
2r0

2

320p2E dk1
1

~k1
21a2!2D

5c000
sol ~k→0!1d08 ~50!
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c2208 ~k→0!5c220
sol1

a4
~4p!3/2)

d0S 12
a1r0

2pA4p
1
a1
2r0

2

64p3D 1S 2a31
2A5
7

a4D
3d2S 11

a2r0

4pA5p
E dk1

1

k1
21a2

1
a2
2r0

2

320p3E dk1
1

~k1
21a2!2D

5c220
sol ~k→0!1d28 .

Notice that both d08 and d28 contain an integral
*dk11/(k1

21a2)2'1/Aa, which diverges asa→0. From the
analysis above, it is easy to see that the stability limit within
the Percus-Yevick approximation is numerically highly un-
stable. This might explain why there have been no numerical
solutions, found in previous studies@4,12,13# that reach the
stability limit, found in previous studies@4,12,13#. The argu-
ments presented here are not confined to the isotropic-
nematic phase transitions. They are completely general and
should apply to other kinds of phase transitions~i.e.,
nematic-smectic phase transition! as well.

IV. COMPUTATIONAL RESULTS

We consider a separable model. In particular, we assume

the Mayer function f (r ,V̂,V̂8)5e2bu(r ,V̂,V̂8)21, can be
written as

f tot~r ,V̂,V̂8!5 f iso~r !1 f aniso~r !P2„cos~V̂–V̂8!…. ~51!

And we have chosen

f iso~r !5expH 24beF S s

r D
12

2S s

r D
6G J 21, ~52!

which is the Mayer function for the standard Lennard-Jones
potential,e is the potential depth ands the potential width.
The anisotropic part of the potential is chosen to be

f aniso~r !54belQ~r2s!
~r2s!

r 6
, ~53!

wherel is a parameter andQ(r2s) is the step function.
Some of the results are shown in Figs. 1 to 7. The parameters
are written in terms of the reduced density and temperature
which have standard definitions:r0

!5Ns3/V and
T!5kBT/e. All the results presented here are done with
1024 points withDr50.02s andl is set to be 0.75.

Using the Lennard-Jones–like anisotropic interaction po-
tentials, Luckhurst and Romano have investigated the
isotropic-nematic transition with Monte Carlo simulations
@14# and theyfound the system in nematic phase before it
freezes. With the same model potentials using stability crite-
rion and coexistence condition, Perera and co-workers
@12,13# also calculated the transition temperature with mean
spherical approximation, hypernetted chain closure, and the
referenced hypernetted chain approximation. Results ob-
tained from the hypernetted chain and referenced hypernet-
ted chain approximations agree reasonably well with the
Monte Carlo results. However, they found similar computa-
tion with the Percus-Yevick closure doesnot predict an
isotropic-nematic transition.

We also studied the stability criterion with our model po-
tential using the Percus-Yevick closure. When we restrict the
system to be in the isotropic phase@angular dependent coef-
ficientsr l in Eq. ~9! for lÞ0 are set to be zero#, we found
that we cannot obtain converged numerical results at or be-
yond the stability limit. In other words, using the stability
criterion there isno solution that indicates an isotropic-
nematic phase transition. For example, whenr0

!50.79 the
stability criterion, Eq.~21!, implies that the system has a
phase transition whenc220(k50) exceeds 126.088. We have
plottedc220(k50) as a function of temperatureT! in Fig. 1.
Notice that we stop getting converged numerical solutions
around T!51.01, beforec220(k50) exceeds the stability
limit. This is consistent with what was found by Perera, Ku-
salik, and Patey@12#.

However, with the Ward identity we can determine an
orientationally dependent densityr(V) self-consistently.
And using this new approach we have obtained numerically
converged solutions within the Percus-Yevick closure be-
yond the temperature where the curve in Fig. 1 stops. And
we found the orientationally partially ordered nematic state.
To estimate the transition temperature, we have tried to use
either the solution obtained from a lower temperature or the
one from a higher temperature as an initial guess to start a
self-consistent run. More precisely, we have tried to gradu-
ally ‘‘cool down’’ the system from an isotropic state as well

FIG. 1. If the probability densityr(V̂) is restricted to be rota-
tionally invariant, we stop getting converged numerical solutions
for the Ornstein-Zernike equation within the Percus-Yevick closure
before the system reaches its stability limit~dashed line!. We have
plotted c220(k50) as a function of the temperature forr0

!50.79
andl50.75, T! is in reduced unit defined in the text.
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as gradually ‘‘heat up’’ the system from an ordered state. We
found a narrow hysteresis in the region close to the phase
transition. In Fig. 2 we show the order parameter as a func-
tion of the temperature. Crosses are the results we obtained
by ‘‘cooling down’’ the system from an isotropic phase and
the squares are the ones obtained by ‘‘heating up’’ the sys-
tem from an orientationally partially ordered nematic phase.
There is an abrupt change in the order parameter in both the
‘‘heating’’ and ‘‘cooling’’ processes, shown in Fig. 2 as dis-
continuities in both curves. This is due to the nature of the
first order phase transition. The discontinuities occur at
T!51.04 when ‘‘cooling’’ and atT!51.09 when ‘‘heating.’’
The isotropic-nematic phase transition temperature should be
between 1.04 to 1.09 within the hysteresis region.

To compare to the data shown in Fig. 1, where the system
is restricted to be in an isotropic phase, we again plotted
c220(k50) as a function of the temperature through both

‘‘heating’’ and ‘‘cooling’’ processes. In this case, however,
the probability density of the system,r(V̂) is allowed to
adjust itself to satisfy the Ward identity. We show that as
expected, the phase transition takes place before the system
reaches its stability limit. The curve obtained from the
‘‘cooling’’ process in Fig. 3 overlaps with the curve shown
in Fig. 1 fromT!51.04 and above. Below this temperature,
the system prefers to be in a partially ordered nematic phase.
This is clearly shown in Fig. 4 where we have plotted the
internal energy as a function of temperature. Below the ‘‘su-
percooling’’ temperature, the internal energy of the isotropic
system~triangles! is much higher than that of the partially
ordered nematic system. In Fig. 5 we show the pressure of
system as temperature varies. Both internal energy and the
pressure show a visible discontinuity around the phase tran-
sition.

When the continuous rotational symmetry in the system is
broken and results in a partial orientational order, the suscep-
tibility or ^h(k50)& rot,220 goes to infinity. To compare the
correlation functions before and after the isotropic-nematic
phase transition, we have plotted^h(k)& rot,220 at T

!51.05
obtained through both the ‘‘heating’’ and ‘‘cooling’’ pro-

FIG. 2. Order parameter̂P2(cosu)& as a function of the tem-
perature forr0

!50.79 andl50.75. Squares are the solutions ob-
tained by ‘‘heating up’’ the system while the stars are the ones by
‘‘cooling down’’ the system. The dotted lines connect the two sets
of the data points as a guide to the eyes. Notice the hysteresis close
to the phase transition. The temperatureT! is again in reduced unit
defined in the text.

FIG. 3. Direct correlation functionc220(k50) as a function of
the temperature forr0

!50.79 andl50.75. The probability density
is self-adjusted to satisfy the Ward identity, not restricted to be
rotationally invariant as in the case of Fig. 1. Squares are the solu-
tions obtained by ‘‘heating up’’ the system while the stars are the
ones by ‘‘cooling down’’ the system. Lines connect the two sets of
the data points as a guide to the eyes,T! is in reduced unit defined
in the text.

FIG. 4. Internal energy as a function of the temperature. Tri-
angles are the results obtained if the system is restricted to be in
isotropic phase. Squares are the solutions obtained by ‘‘heating up’’
the system while the stars are the ones by ‘‘cooling down’’ the
system. Dotted lines connect the data points as a guide to the eyes.
All relevant quantities are in reduced units defined in the text.

FIG. 5. Pressure as a function of the temperature. The param-
eters and symbols are the same as the ones used in Fig. 4. All
relevant quantities are in reduced units defined in the text.
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cesses. As shown in Fig. 2 this temperature is in the hyster-
esis region. The solution obtained through ‘‘heating’’
~squares! shows that the system has partial orientational or-
der while the solution obtained through ‘‘cooling’’~stars!
indicates that the system is in isotropic phase. We show in
Fig. 6 that when the system has a partial orientational order,
limk→0^h(k)& rot,220 approaches infinity, which demonstrates
the presence of the Goldstone modes. When the system is in
the isotropic phase, however,^h(k)& rot,220 in the k→0 limit
has a large but finite value. It is reasonable to expect that the
susceptibility is large as the system approaches the stability
limit. However, we must emphasize that to treat the Gold-
stone modes resulting from a spontaneous breaking of the
rotational symmetry correctly, it is crucial@6# that the sus-
ceptibility diverges instead of having a finite value, and the
Ward identity is the key to achieve that.

In Fig. 7 we show^h(r )& rot,l l 0 as a function ofr for
T!51.0, r0

!50.79, andl50.75. The oscillations of the cor-
relation function as a function ofr are typical of a fluid with
a highly repulsive core. Since the angular dependent part of
the interaction is outside the core, in the core regionr,s,
the total correlation functionh(r ,u,u8) is 21. In other
words, as shown in Fig. 7̂h(r )& rot,000524pA4p and
^h(r )& rot,l l 050 for l.0 in the core region. All components
for lÞ0 vary on a relatively small scale compared to their
l50 counterparts and components forl.2 are too small to
be seen in the figure. Thel50 component of the direct cor-
relation functionc000(r ) shows a sharp rise inside the core
and thel52 componentc220(r ) has a sharp peak just outside
the core. Both components die down rapidly outside the peak
and the componentscll 0(r ) for l.2 are much smaller. These
features are essentially the same as the ones we observed in
an earlier model calculation@6# and therefore we shall not
include these figures in the paper. With different parameters
within reasonable range, the correlation functions retain the
same qualitative features described above.

V. SUMMARY AND DISCUSSION

We have shown that a Ward identity that relates the one-
particle probability density to the integral of the two-particle

density in nematic fluids can be used in conjunction with the
Ornstein-Zernike equation and Percus-Yevick closure to de-
termine the one-particle probability densityr(V̂) and corre-
lation functions self-consistently. This approach allows us to
study the isotropic-nematic transition using an integral equa-
tion method without further approximations other than the
closure itself. This is different from the early studies based
on a truncated density functional theory, which showed
@12,13# that one cannot find a numerical solution within the
Percus-Yevick closure that indicates a phase transition. We
give a qualitative general analysis that explains why the sta-
bility limit within the Percus-Yevick approximation is nu-
merically highly unstable. Using this approach, we find the
orientationally partially ordered nematic state, in which the
total correlation functionh(k) diverges whenk→0, as ex-
pected for systems with the presence of the Goldstone
modes. We also reported the order parameter and other ther-
modynamic properties of the system in both isotropic and
orientationally partially ordered nematic phases.

In principle our approach can be used in other models
with strong interparticle interactions. Our experience shows,
however, that one needs a considerable amount of numerical
effort for such calculations. Compared to similar calculations
in which r(V̂) is restricted to be isotropic in each self-
consistent computational cycle two additional tasks must be
accomplished. One is thatr(V̂) must be determined self-
consistently, the other is that we must solve for director-
direction dependent correlation functionh(k,V̂,V̂8) first be-
fore calculating the rotationally invariant correlation function
^h(k,V̂,V̂8)& rot . In the process of pursuing a converged nu-
merical solution, large deviations from the final solution
might occur, especially close to the phase transition condi-
tion. In such a case, a large basis set is needed. For the model
potential we used, a basis set withl up to 6 and 1024 radial
mesh points is necessary. The anisotropic potential we used
here is rather ‘‘soft’’ compared to, for example, the Lennard-
Jones–like potential@14# or hard spherocylinder and hard
ellipsoid potentials. We expect that a sharp anisotropic inter-
acting potential in general leads to large fluctuations in the
computational process. Therefore perhaps a rather large basis
set and long computational time are required to obtain con-

FIG. 6. The correlation function̂h(k)& rot,220 at T
!51.05. As

shown in Fig. 2,T!51.05 is in the hysteresis region. The system
can be found either in an isotropic phase~stars! or in a partially
ordered nematic phase~squares! depending on the initial conditions.
The figure shows that the singularity atk→0 limit is present only
when the system has a broken spontaneous rotational symmetry.k
is in reduced unit defined in the text.

FIG. 7. Correlation function^h(r )& rot,l l 0 for r0
!50.79 and

l50.75 atT!51.0. Thel50 component is indicated by the solid
line, the l52 component is marked by squares, other components
are too small to be seen in the figure.r is in reduced unit defined in
the text.
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verged results. We attempted to use the anisotropic potential
in the same form~also same parameters! as the ones used in
Luckhurst and Romano’s Monte Carlo work@14# and were
not able to find a converged numerical solution within the
Percus-Yevick approximation in the nematic phase. One pos-
sibility is that there is no numerical solution in this case, the
other possibility is that more elaborate computational efforts
are needed. It certainly would be helpful if it could be shown
analytically whether there exists a solution given an interac-
tion potential and parameters of the system.

So far we have only considered how to apply Percus-
Yevick closure to systems with spontaneously orientational
order, in which we have assumed that the direct correlation

functionc is short ranged. In order to take into account long-
range fluctuations, important in studying isotropic-nematic
phase transitions, it seems necessary to consider how one can
correctly apply a more complete closure~such as
hypernetted-chain approximation! in systems with spontane-
ously broken rotational symmetries.
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